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Vehicle occupancy detector based on FMCW
mm-wave radar at 77 GHz
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Abstract— Millimeter-wave (mmWave) radars are a solution in au-
tomotive applications such as Adaptive Driver Assisted Systems
(ADAS). This work explores the use of commercially-available
mmWave radar technology for in-cab vehicle applications. A frame-
work for vehicle occupancy detector based on mmWave radar
at 77 GHz is presented. A multiple-input multiple-output (MIMO)
frequency-modulated continuous wave (FMCW) radar from Texas
Instruments (AWR1642) is used. The system can detect the pres-
ence of people occupying the seats by measuring small movements
of the body. To this end, the static clutter is removed, therefore the
point cloud returned by the radar contains information about the
body. The radar is installed on the roof of the vehicle to have the
maximum field of view of the seats. An algorithm that uses both the density and the dispersion of points around each seat
is proposed to determine its degree of occupation. Experimental results have been presented for 4 and 5- seater vehicles
with high accuracy.

Index Terms— Automotive radar, mm-wave radar, seat occupancy, detection, V2X

I. INTRODUCTION

ELECTRONIC systems used to detect, identify and count
occupants within a vehicle are referred to as vehicle

occupancy detection systems. Their use is rising since they can
help in the mobility field in topics such as decreasing traffic
congestion, saving time and reducing environmental pollution.

Traffic congestion is rising and becoming a serious issue
in most of the cities. It is created by an increase in the
number of vehicles on the road, which results in slower speeds,
road blockages, longer travel times, wasting valuable time and
negatively impacting the economy.

High-occupancy-vehicle (HOV) lanes are being promoted
by government regulations as a new strategy to increase road
and city mobility. HOV lanes will serve to alleviate general
congestion by encouraging the usage of carpooling, public
transportation and transit. HOV lanes and congestion toll
discount policies are in place to promote vehicle sharing. How-
ever, vehicle occupancy detection, needed to implement such
policies, is often done using labor-intensive manual procedures
[1]. Increasingly, access to congested cities and places is being
gradually restricted, taking into account environmental criteria.
As a result, the demand for vehicle occupancy detection

Manuscript received December 20, 2021; accepted January xx, 2022.
Date of publication January xx, 2022; date of current version January
xx, 2022.This work was supported by the Spanish Government Project
RTI2018-096019-B-C31, the R2B2020 project and the EU’s European
Regional Development Fund (ERDF).

The authors are with the Electronics, Electrical and Automat-
ics Engineering Department, Rovira and Virgili University, Tarrag-
ona, Spain (e-mail: nil.munte@urv.cat, antonioramon.lazaro@urv.cat,
ramon.villarino@urv.cat, david.girbau@urv.cat). The corresponding au-
thor is A. Lazaro (e-mail: antonioramon.lazaro@urv.cat).

systems is expected to rise in the coming years.
Radar technology can identify the presence of a person

even in the most difficult of environments, such as in bad
weather conditions, or in the presence of intense light or
darkness. Millimeter waves, unlike other sensing technologies,
can pass through materials like plastic and clothing. In this
way, sensors can be hidden behind a housing or placed inside
or beneath other components of the car, thus being non-
contact and non-intrusive. An ultrasonic sensor, for example,
cannot distinguish the difference between a human and a static
object, and cameras will not detect a baby in bright or dark
light conditions. Recently, the authors have proposed a seat-
occupancy detector and breathing monitoring based on a low-
cost coherent-pulsed mmWave radar at 60 GHz. However, due
to its short-range (on the order of 1 meter), a radar sensor must
be installed in front of each seat [2]. This study proposes
a different solution that overcomes those limits. It proposes
a FMCW MIMO radar operating at the 77 GHz band to
determine the degree of occupancy of vehicles with multiple
passengers.

The paper is organized as follows. After the introduction,
in section II, different systems proposed to detect occu-
pants inside a vehicle are reviewed. Section III describes
the proposed solution based on a 77 GHz mmWave radar.
Experimental results and discussion are given in section IV.
Finally, conclusions are provided in section V.

II. STATE-OF-THE-ART

Several studies and companies have attempted to design
an automated detection method to overcome this challenge.
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Vehicle occupancy detection methods proposed in the litera-
ture are mainly based on video systems, which have different
ways of classifying images [1], [3]–[9] and thermal images
[10]–[13]. Recently, commercial products based on video and
computer tools have been designed for these applications and
marketed by suppliers providers such as Xerox, Conduent
Inc., Invision AI, Fortran Traffic Systems Limited, Indra, and
Siemens. However, since these products are not boarded in the
car but are external, and due to various factors such as tinted
windows, obstruction and variation in occupant posture, ve-
hicle speed, size, shape, imaging geometry variation, and bad
weather conditions, the vehicle passenger occupancy detection
method based on video has several drawbacks in distinguishing
between passengers and objects placed on the seat, which
can reduce cases of successful detection. Systems based on
thermal images have higher cost compared to optical video-
based systems. Thus, the design of alternative cost-effective
vehicle occupancy detection systems is needed to attract more
customers.

The integration of detection devices inside vehicles is
another option to determine their degree of occupancy. On
the other hand, the use of on-board seat-occupancy detection
systems is also used in other applications so, one only system
could be shared by these applications. For instance, airbag
systems are fundamental safety elements in modern vehicles
and they require information about the presence and type
of passenger who may occupy the seat to work properly.
Unwanted airbag activation results in costly repair operation.
Additionally, activation an airbag in a seat occupied by a rear-
facing baby seat can result in fatal injuries [14]. As a result,
sensors to detect seat occupancy are required, preventing the
airbag from activating when the seat is not occupied by a
user or by a rear-facing baby. Seat belt is another mandatory
safety system. A different application of the seat occupancy
detector is as a seat belt reminder. Conventional seat belt
reminder systems work with weight sensors. As a result, when
the seats are occupied by luggage or purchases, they generate
unwanted alarms. Seat occupancy monitoring systems can also
be used to improve passenger’s comfort, in addition to meeting
regulatory requirements, such as managing the air conditioning
system based on the occupancy rate. Another use is to alert
the presence of children or pets, preventing the driver from
forgetting them inside the vehicle.

In the literature, various approaches to on-board detect
seat occupancy have been proposed. There are two types of
methods: with contact and without contact. The first approach
is based on installing a sensor in the seat to detect the presence
of a person, whilst the second way relies on devices that detect
the presence of an occupant at a distance using electromag-
netic waves or optical systems. The diagram shown in Fig.1
summarizes different seat-occupancy detection systems.

Pressure sensors is a widespread contact method to detect
seat occupancy, [15] [16]. The main limitations with these
sensors is their sensitivity to vibrations and that the passenger
must be in contact with the seat. Another type of sensor is
based on the use of capacitive sensing and consists of a set of
electrode arrays embedded in the seat [17]–[19]. On the other
hand, these sensors are sensitive to interference as well as the

distance between the body and the seat.

Fig. 1. Classification of seat-occupancy detection systems.

Recently, contactless seat-occupancy detection is gaining
interest. Optical sensors, such as the use of cameras [20]–[22]
could be a viable alternative as detection systems, particularly
for rear-seat applications. Recently, in [22] a camera-based
method to monitor breathing from a reflective object attached
to the belt has been studied. The time-of-flight measured with
LIDAR sensors has also been proposed as a seat-occupancy
detection method [23]. The main disadvantage of camera-
based systems is that they rely on face or shape detection,
making it difficult to use in low-light situations or when
children are dressed. Infrared cameras can detect people in
low-light conditions thanks to body heat, but humans may
not be distinguished when the interior of the automobile is
hot, such as in summer. In addition, infrared cameras are
more expensive than traditional ones. These vision systems use
extensive signal processing techniques, which greatly increases
the computational cost and resources that must be added to
that of the system. Recent developments in new technologies
such as millimeter wave (mmWave) radar sensors and V2X
communications [24] can contribute to develop future vehicle
occupancy detection systems. The cost of these radars is falling
due to increasing mass marketing in different Advanced Driver
Assistance Systems (ADAS) and the development of mmWave
semiconductor devices for 5G communications systems. Radar
systems applied to vehicle occupancy detection are beginning
to be investigated. Car designers have already successfully
integrated millimeter-wave (mmWave) sensors within the ve-
hicle cabin for automotive applications. One of these potential
applications is the ability to detect occupants within the vehicle
considering a variety of both lighting conditions and sensor
locations, regardless of movement. For instance, this can help
automotive systems detect an unattended child in the rear
of the car or the position of the occupants to control the
temperature.

Recently, different radar types have been studied for vital-
signs monitoring such as [25]–[27], Continuous Wave (CW)
Doppler radars [28]–[30], Frequency-Modulated Continuous-
Wave Radar (FMCW) Radar [31] or Impulse Radio Ultra-
Wide Band (IR-UWB). However, a relatively small number
of works have focused on automotive in-cabine applications.
Seat occupancy based on FMCW microwave and mm-wave
radars at 24 GHz and 77 GHz have been recently proposed
in [32] and [33], respectively. Seat occupancy detection based
on monitoring the received UWB signal has been proposed
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in [34]. A system based on a coherent pulse radar at 60 GHz
capable of detecting the presence of a passenger and measuring
the breathing rate has been presented in [2]. This work is
based on MIMO FMCW radar technology because it is able to
detect small movements, as well as range and angle of several
targets simultaneously. These features besides the maturity of
this technology in the automotive sector, and therefore the
experience of the vehicle manufacturers, making it ideal for
this application over other radar technologies.

III. SYSTEM DESIGN AND THEORETICAL BACKGROUND

A. System overview
The system is based on the mmWave AWR1642 radar

chipset [35] from Texas Instruments (TI, Dallas, USA). It
incorporates an FMCW radar that have 2 transmitters and
4 receivers with built-in phase lock loop (PLL) and analog-
to-digital converters (ADC). TI’s evaluation board, AWR162
BOOST [36], which also integrates a C674x digital signal
processor (DSP) and an ARM R4F base-band microcontroller
for the signal processing, the radar setup and communications
with an external host controller, is used in this work. Fig. 2
shows a block diagram of the board. The radar can operate
in the 76-77 GHz or 77-81 GHz band transmitting up to 12.5
dBm. The board implements a virtual antenna array with 8
equivalent antennas spaced λ/2. Each of the antennas of the
array has a maximum gain of 9 dBi in the 76-81 GHz operating
band.

The radar is suspended from the sunroof of the car for
demonstration purposes, pointing towards the seats, as seen
in Figure 3. In a real non-demonstration scenario, it will most
likely be installed around the rear view mirror, or even on
the ceiling. Two cases will be investigated, a 4-seater car and
a 5-seater car, as shown in Figure 3. Fig. 4 shows the radar
board installed on the front glass of a vehicle that was used
for testing in this work.

Fig. 2. TI evaluation board AWR1642 BOOST diagram.

B. Basic measurement theory
An FMCW radar transmits a frame composed by L chirp

signals (see Fig.5). Each chirp is a signal whose frequency
varies with time from the minimum value fmin to a maximum

Fig. 3. Installing the radar in a 4-seat car and 5-seat car, and seat
numbering.

Fig. 4. Photograph of the radar attached to the front glass for testing.

value fmax following the shape of a saw tooth, being B =
fmax − fmin. A linear chirp signal performs a linear sweep
in frequency from a specific frequency value to a higher one
(or vice versa). A typical FMCW chirp signal can be written
as:

xc(t) = exp(j2π(fct+
µ

2
t2)) (1)

where fc is the carrier frequency and µ = B/T is the slope
of the chirp signal, being T the sweep time. The transmitted
signal is composed by L chirps and it can be expressed as:

xT (t) =

L−1∑
l=0

xc(t)
∏(

t− lT

T

)
(2)

where
∏
(t) is the normalized rectangular signal. In each of

the four receivers, the received signal and transmitted signals
are mixed and filtered to finally obtain the beat signal, which
is sampled and discretized at a rate of fs using a fast ADC
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TABLE I
CONFIGURATION OF THE FMCW RADAR

Parameter Value
Start Frequency 77 GHz

Sweep bandwidth 3.44 GHz
Sweep slope 70 MHz/µs

Frame duration 100 ms
Sampling frequency 5209 kbps

Number of samples per chirp 256
Number of chirps per frame 32

Transmit antennas 2
Receive antennas 4

for the post processing. The received signal of the kth array
element for each lth chirp is given by [37]:

xr,lk (t) = axc(t− τ)exp(j2πfDlT )exp(j
2π

λ
dksinθ) (3)

The beat signal obtained for the lth chirp and the kth array
element ylk(t) can be expressed as [37]:

ylk(t) = xr,lk (t) · xT (t)
∗ (4)

yl,k(t) = a · exp(−j(2πfcτ − µτ2/2))·
exp(−j2πµτt) · exp(j2πfDlT ) · exp(j 2πd

λ sin(θ))
(5)

where a is the amplitude of the target, d is the spacing between
adjacent antenna elements, λ is the wavelength at the carrier
frequency, τ is the propagation delay, fD is the Doppler
frequency shift due to velocity, and θ is the angle-of-arrival.
Therefore, the first term is a complex amplitude, the second is
a time-of-arrival term that depends on range, the third is the
Doppler and it is related to movement, and the last term is
the direction-of-arrival (DOA) that depends on the angle-of-
arrival. The samples ylk[n] = ylk(nTs) for n = 0, 1, ..., Ns−1
are saved in a tridimensional matrix.

The processing chain implemented in the board DSP [38]
is described in Fig. 6. A windowed Fast Fourier transform
applied to the samples of each chirp (FFT in range) is used to
estimate range. The resolution in range depends on the ability
to discriminate the peaks of the spectrum to resolve targets.
Thus, the range resolution is determined by:

∆R =
c

2B
(6)

Considering a bandwidth of 3.4 GHz, a range resolution of
4.4 cm from (6) is obtained. The main goal of this work is to
distinguish between people and inanimate objects that may be
in the seats or between people and static clutter, based on the
movements detected that could be as small as those associated
with breathing. Thus, before of performing the 2D-FFT, a
static clutter removal algorithm is implemented by subtracting
the mean value of the input samples.

Subsequently, another FFT (Doppler FFT) is applied for
each chirp and antenna channel, obtaining a range-Doppler
map for each kth array element. In order to reduce clutter, a
constant false alarm rate (CFAR) algorithm is used to estimate
a threshold. Points above this threshold are considered clutter
and are removed from the range-Doppler map. Several CFAR
algorithms have been proposed in the literature so far [39],

[40], however in this work the cell-averaging (CA-CFAR)
is used for its simplicity [41]. This algorithm estimates the
surrounding noise power by averaging the neighboring cells
to the cell of interest. A third FFT (AoA FFT) is then applied.
The FFT-based algorithm for DOA detection is the most
widely used algorithm because of its low complexity and ease
of implementation [42]. The angle estimation is performed
via processing the received signal at the array composed by
multiple elements. The simplest algorithm is the angle FFT
algorithm. If a Fourier transform is performed in the spatial
dimension through the receiver elements (known as angle FFT)
it will be possible to distinguish objects based on their AoA
(θ) in azimuth. Enhanced angular algorithms can be employed
such as ESPRIT [43], MUSIC [42], [44] or Capon beamformer
[45]. In this work, the point cloud is used as the occupancy
detection input. The total procedure requires three fast Fourier
transforms (in range, velocity and angle) as shown in Fig. 6.
On the radar sensor board, preliminary processing of the signal
received by the radar is performed, yielding a point cloud. The
board provides a signal-to-noise ratio (SNR) for each point
estimated from the previously saved noise profile. The point
cloud is then processed on a Raspberry Pi 4 or a personal
computer.

Fig. 5. Frame of chirps.

Fig. 6. Mmwave radar processing chain.

IV. SEAT OCCUPANCY ALGORITHM

Figures 7 and 8 show the point cloud and the measured
SNR for each point during 10 seconds in a car with 4 and
5 seats, respectively. Based on these plots, an algorithm has
been developed for classification from some features.

Firstly, some parameters have been defined to roughly
determine the seating areas shown in red in figures 7 and 8.
The area of space occupied by a body approximates that of
an ellipsoid. These ellipsoids are referenced to the coordinates
of the center of the interior of the vehicle (Xk, Yk) and the
radius in horizontal (Rxk) and in vertical (Ryk), where k is the
index of seat, k = 1...Nseats. These parameters are the input
of the algorithm and can vary depending on the car. However,
they can be obtained from a table as a function of the vehicle



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

Fig. 7. Point cloud measured for a four-seater car depending on the
seat. The colored bar shows the measured SNR. The seating areas are
marked in red.

model or specified manually by the user. As example, Table II
provides the values that define the seating areas for two cars
with 4 and 5 seats.

The algorithm takes into account the points cloud saved over
a period of time. Once the regions of every point have been
calculated, their coordinates are saved in the vectors Xk and
Y k. A point (xi, yi) is in zone k if it belongs to the ellipsoid:√(

xi −XCk

Rxk

)2

+

(
yi − YCk

Ryk

)2

< 1 (7)

where XCk and YCk are the coordinates of the center of the
area k, and Rxk and Ryk are the semi-axes of the ellipsoid in
the directions x and y, respectively.

Then the number of the point Nk of the cloud that belongs
to a specific area is the length of vector Xk or Y k.

The mobility of a seated person produces a dispersion of
the points in each occupied seat. The standard deviation of the
points in each zone gives a measure of this dispersion:

σk =

√√√√ 1

Nk

i=Nk∑
i=1

(
Xki − E(Xk)

)2
+
(
Yki − E(Y k)

)2
(8)

where E() denotes the mean operator and Xki and Yki are
the components of the vectors Xk or Y k, respectively. The
following classification function is defined:

fk =
σk · Nk

N∑Nz

k=1 σk · Nk

N

(9)

This normalized function corresponds to the standard deviation
of the points in each zone (σk) multiplied by the density
of points in the zone (Nk/N ). The function includes the
fraction of points to avoid false detection when a seat is empty,

Fig. 8. Point cloud measured for a five-seater car depending on the
seat. The colored bar shows the measured SNR. The seating areas are
marked in red.

characterized by a small number of points read by the radar,
sometimes dispersed due to residual clutter. A threshold is
established for each zone, THk. If fk > THk the seat is
considered occupied. The seat state (0 or 1) is saved in a
vector sok.

sok[n] =

{
1 , fk[n] > THk

0 , else
(10)

The threshold value varies between the front and rear seats
due that for certain blockage the number of points in the rear
regions has been observed smaller than for the front zones. The
threshold values are fixed and are obtained from the typical
values obtained for the function fk from sets of measurements.
The values obtained are listed in Table II.

Finally, the seat occupancy vector is averaged to eliminate
errors associated with passenger movement (eg. when entering
or exiting the vehicle). A moving average filter is used (eg. by
averaging the last M=3 samples) and the result is compared
to a threshold (m=0.5). The filtered seat occupancy sok is
obtained from:

sok[n] =

{
1 , 1

M

∑n
i=n−M+1 sok[i] > m

0 , else
(11)

where sok is the seat occupancy for seat kth.
Figure 9 shows the flow chart of the algorithm. The al-

gorithm has been implemented in both Matlab and Python.
The latter allows to run the algorithm on different platforms
including Raspberry Pi platforms.

V. RESULTS

First, the acquisition radar algorithms have been tested to
distinguish between people and objects that may occupy the
seats. Figure 10 shows the point cloud measured in a car
occupied by the driver and a bag in one of the side seats. It
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TABLE II
GEOMETRIC PARAMETERS ACCORDING TO THE NUMBER OF SEATS IN

THE VEHICLE

Parameter 4 seats 5 seats
Distance radar to front seat row 60 cm 50 cm

Distance between front seats 60 cm 60 cm
Distance between back seats 60 cm 80 cm

Distance between front and back seats 80 cm 80 cm
Horizontal semi-axis front seats 20 cm 25 cm
Horizontal semi-axis back seats 20 cm 17 cm

Vertical semi-axis front seats 20 cm 20 cm
Vertical semi-axis back seats 20 cm 20 cm

Threshold (TH) for front seats 0.01 0.01
Threshold (TH) for back seats 0.005 0.05

Fig. 9. Processing chain flow diagram.

can be seen that there are practically no points on the seat on
which the bag is located. Another test was performed to show
that vehicle movement does not significantly affect detection.
Figure 11 shows the results obtained; it can be observed that
the cloud does not vary hardly with respect to the static case
(i.e. the one shown in Figure 10). Secondly, different people
sat in a vehicle in any of the seats at random, and the positions
of the occupied seats were recorded manually and compared
with the predictions given by the classification algorithm. The
confusion matrices of the number of occupants obtained for
the case of a 4 and 5-seat vehicle are shown in Figures 12
and 13, respectively. In the confusion matrix plot, the rows
are the predicted class (Output Class) and the columns the true
class (Target Class). A row summary shows the percentages of
correctly and incorrectly classified observations for each true
class. Similarly, a column summary shows the percentages
of correctly and incorrectly classified observations for each
predicted class. The accuracy found is 96% and 90% for 4-
and 5-seats, respectively. The lower value obtained in the case
of 5 seats is explained by the greater difficulty to distinguish
the rear seats because the distance between seats is less than

in the 4-seater car.
In order to investigate the error in the prediction of the

correct seat, Fig. 14 shows the confusion matrix of the state
of each seat for the case of 4-seater car. The classes have been
coded in binary (0001 seat number 1 occupied and 1111 for all
seats occupied) It can be seen that most of the errors occur in
the rear seats where the seating position is not as well defined
as in the front ones. Even so, the error obtained is acceptable
(accuracy of 86.125%), especially if the occupancy rate can be
averaged over time, which will not vary as long as an occupant
does not enter or exit the vehicle.

The proposed algorithm has low computational load, there-
fore it can be implemented in real time, allowing the occu-
pation to be dynamically updated. Fig. 15 shows an example
of occupancy detection (0 free, 1 occupied) of each seat in
a 4-seat car, as a function of the time and as passengers
enter or exit the vehicle. Some isolated errors can be observed
when the passengers enter or exit from the vehicle. However
the algorithm detects the seat occupancy when the position
remains stable, indicated with red rectangles. These failed
points associated with transitions could be removed using the
moving average filter provided in (11).

Fig. 10. Point cloud measured with the driver present and a bag (inset
figure) occupying the passenger seat.

VI. CONCLUSION AND FUTURE WORK

A vehicle occupancy detection system based on a MIMO
FMCW mmWave radar at 77 GHz has been investigated. The
radar is suspended on the ceiling of the vehicle, although
it can also be in other places where it has visibility of the
passengers. An algorithm to determine the seat occupancy
from the measured point cloud read by the radar has been
proposed. A static clutter removal algorithm is applied to
consider only points associated to small body movements.
Therefore, the system is able to detect and distinguish a
passenger from other objects that may can occupy the seat. A
classification method is used, which is based on a function that
takes into account the dispersion of the point cloud around the
area in which the seat is located, as well as the point density
of the cloud. Therefore, complex learning tools that require
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Fig. 11. Point cloud measured with the driver present and the car in
motion.

Fig. 12. Confusion matrix of the number of occupants for the case of a
4-seater car.

training procedures are not needed. Experimental results have
been presented for 4 and 5-seater cars achieving high accuracy
both in determining the number of occupants and the position
of the occupied seat. This works opens the door to use the
proposed occupancy detector combined with future vehicular
communications systems, to apply it, for instance, to high-
occupancy-vehicle (HOV) lanes.
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